If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q=-q^2
We move all terms to the left:
2q-(-q^2)=0
We get rid of parentheses
q^2+2q=0
a = 1; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*1}=\frac{-4}{2} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*1}=\frac{0}{2} =0 $
| m-8=7-2m | | 17n+9=18n | | -2v=-7v^2 | | 4w=10+2w | | 2+10v=-18 | | -8x=-x^2-6 | | (2)6x+7=19x-28 | | -4+10=-9h | | 8-s=3s | | 3/2x+5=x-2 | | 8−s=3s | | x+1/3x-10=50 | | 6s=-s^2-9 | | 4j=-3+5j | | -20.5=y/6-1.3 | | -2x-6=50 | | 40x^2+80x-70=0 | | 3b-5=2b÷6+2 | | 8x-5=5x-26 | | 8z^2-2=-8z | | -8p=-3p+10 | | 2x+71=50 | | c-11/3=2 | | 8q^2+3=0 | | 21x+21=777 | | 2+12x+3=136 | | 2z-8=7+5z | | 2s^2=-8s-8 | | 12=3(d+1) | | 16w^2-84w+63=0 | | 5=2(3+2x) | | 5x+90=120 |